On simple ideal hyperbolic Coxeter polytopes
نویسندگان
چکیده
منابع مشابه
On simple ideal hyperbolic Coxeter polytopes
Let IH be the n-dimensional hyperbolic space and let P be a simple polytope in IH. P is called an ideal polytope if all vertices of P belong to the boundary of IH. P is called a Coxeter polytope if all dihedral angles of P are submultiples of π. There is no complete classification of hyperbolic Coxeter polytopes. In [6] Vinberg proved that there are no compact hyperbolic Coxeter polytopes in IH...
متن کاملEssential Hyperbolic Coxeter Polytopes
We introduce a notion of essential hyperbolic Coxeter polytope as a polytope which fits some minimality conditions. The problem of classification of hyperbolic reflection groups can be easily reduced to classification of essential Coxeter polytopes. We determine a potentially large combinatorial class of polytopes containing, in particular, all the compact hyperbolic Coxeter polytopes of dimens...
متن کاملOn hyperbolic Coxeter polytopes with mutually intersecting facets
We prove that, apart from some well-known low-dimensional examples, any compact hyperbolic Coxeter polytope has a pair of disjoint facets. This is one of very few known general results concerning combinatorics of compact hyperbolic Coxeter polytopes. We also obtain a similar result for simple non-compact polytopes.
متن کاملHyperbolic Coxeter N-polytopes with N + 2 Facets
In this paper, we classify all the hyperbolic non-compact Coxeter polytopes of finite volume combinatorial type of which is either a pyramid over a product of two simplices or a product of two simplices of dimension greater than one. Combined with results of Kaplinskaja [5] and Esselmann [3] this completes the classification of hyperbolic Coxeter n-polytopes of finite volume with n + 2 facets.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Izvestiya: Mathematics
سال: 2008
ISSN: 1064-5632,1468-4810
DOI: 10.1070/im2008v072n01abeh002394