On simple ideal hyperbolic Coxeter polytopes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On simple ideal hyperbolic Coxeter polytopes

Let IH be the n-dimensional hyperbolic space and let P be a simple polytope in IH. P is called an ideal polytope if all vertices of P belong to the boundary of IH. P is called a Coxeter polytope if all dihedral angles of P are submultiples of π. There is no complete classification of hyperbolic Coxeter polytopes. In [6] Vinberg proved that there are no compact hyperbolic Coxeter polytopes in IH...

متن کامل

Essential Hyperbolic Coxeter Polytopes

We introduce a notion of essential hyperbolic Coxeter polytope as a polytope which fits some minimality conditions. The problem of classification of hyperbolic reflection groups can be easily reduced to classification of essential Coxeter polytopes. We determine a potentially large combinatorial class of polytopes containing, in particular, all the compact hyperbolic Coxeter polytopes of dimens...

متن کامل

On hyperbolic Coxeter polytopes with mutually intersecting facets

We prove that, apart from some well-known low-dimensional examples, any compact hyperbolic Coxeter polytope has a pair of disjoint facets. This is one of very few known general results concerning combinatorics of compact hyperbolic Coxeter polytopes. We also obtain a similar result for simple non-compact polytopes.

متن کامل

Hyperbolic Coxeter N-polytopes with N + 2 Facets

In this paper, we classify all the hyperbolic non-compact Coxeter polytopes of finite volume combinatorial type of which is either a pyramid over a product of two simplices or a product of two simplices of dimension greater than one. Combined with results of Kaplinskaja [5] and Esselmann [3] this completes the classification of hyperbolic Coxeter n-polytopes of finite volume with n + 2 facets.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Izvestiya: Mathematics

سال: 2008

ISSN: 1064-5632,1468-4810

DOI: 10.1070/im2008v072n01abeh002394